Abstract

Conventional techniques for thermal conductivity measurements can lead to unreliable results when applied to nanostructures because heaters and temperature sensors needed for the measurement cannot have a negligible size and therefore perturb the result. In this paper, we focus on the 3ω technique, applied to the evaluation of the thermal conductivity of suspended silicon nanoribbons. We introduce a numerical approach based on the finite element solution of the electrical and thermal transport equations and compare its results with those of conventional methods. We show that with our approach we achieve an excellent fit of the experimental data, in particular, for nanostructured materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.