Abstract

We describe the construction and performance of a polarimeter based on a quarter-wave plate rotated by a model airplane motor. The motor rotates at a high angular frequency of ω∼2π×160 Hz, which enables the polarimeter to monitor the polarization state of an incident beam of light in real-time. We show that a simple analysis of the polarimeter signal using the fast Fourier transform on a standard digital oscilloscope provides an excellent measure of the polarization state for many laboratory applications. The polarimeter is straightforward to construct, portable, and features a high-dynamic range, facilitating a wide range of optics laboratory tasks that require free-space or fiber-based polarization analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.