Abstract
Notch family molecules are thought to be negative regulators of neuronal differentiation in early brain development. After expression in the embryonic period, Notch2 continues to be expressed postnatally in the specific regions in the rodent brain. Here, we examined Notch2 expression in the postnatal mouse brain using lacZ knockin animals at the Notch2 locus. Notch2 expression was observed in the developing cerebellum and hippocampus, characteristic regions where neurogenesis persists after birth. Double staining of sections revealed that Notch2 was expressed by Bergmann glia in the cerebellum, radial glia in the hippocampus, and some astrocytes in both regions. Notch2 expression by glial cells was clearly confirmed in dissociated cell cultures. Interestingly, neocortical glia, many of which did not express Notch2 in vivo, did express Notch2 in a dissociated culture condition. The triple staining of dissociated cell cultures revealed that stronger Notch2 expression correlated with the immature type of glial gene expressions: stronger vimentin and weaker glial fibrillary acidic protein expressions. In addition, Notch2 expression correlated with the incorporation of bromodeoxyuridine both in vivo and in vitro. Thus, these findings demonstrate that Notch2 is expressed not only by neuronal cells in the embryonic brain, but also by glial cells in the postnatal brain, and that its expression negatively correlates with glial differentiation, proposing its novel function as a negative regulator of glial differentiation in mammalian brain development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.