Abstract

Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways. The literature contains controversial reports as to the absolute role(s) of Notch signalling during the process of somite formation. Recent data in the zebrafish have suggested that the only role of Notch signalling is to synchronise clock gene oscillations across the PSM and that somite formation can continue in the absence of Notch activity. However, it is not clear in the mouse if an FGF/Wnt-based oscillator is sufficient to generate segmented structures, such as the somites, in the absence of all Notch activity. We have investigated the requirement for Notch signalling in the mouse somitogenesis clock by analysing embryos carrying a mutation in different components of the Notch pathway, such as Lunatic fringe (Lfng), Hes7, Rbpj, and presenilin1/presenilin2 (Psen1/Psen2), and by pharmacological blocking of the Notch pathway. In contrast to the fish studies, we show that mouse embryos lacking all Notch activity do not show oscillatory activity, as evidenced by the absence of waves of clock gene expression across the PSM, and they do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for the formation of a segmented body axis.

Highlights

  • Segmentation is a key feature of the body plan of all vertebrates, including humans, that initiates very early in embryonic development

  • Recent data in the zebrafish embryo have suggested that the only role of Notch signalling in this process is to synchronise gene oscillations between neighbouring cells and that somite formation can continue in the absence of Notch activity

  • We show that mouse embryos lacking all Notch activity do not show oscillatory activity and do not develop somites

Read more

Summary

Introduction

Segmentation is a key feature of the body plan of all vertebrates, including humans, that initiates very early in embryonic development. Critical molecular and embryological experimental data obtained in the last ten years has shown that somitogenesis is governed by a molecular oscillator [5] that drives cyclic expression of genes in the PSM and which is coupled to the formation of the somites [2,3,6,7,8]. Expression of these cyclic genes is coordinated such that a wave of expression travels caudo-rostrally throughout the PSM during the formation of one somite. All cyclic genes identified to date encode either (a) components or modulators of the Notch pathway (b) components of the Wnt pathway or (c) components of the FGF pathway [2,3,6,7,8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call