Abstract

Adipose derived stem cells (ASC) differentiate into a Schwann cell (SC)-like phenotype but the signalling pathways mediating this are unknown. We hypothesised that notch might be involved, given its important role in regulating SC development. Rat ASC were differentiated using bFGF, PDGF, GGF-2 and forskolin. RT-PCR analysis showed that mRNA for notch-1 and notch-2 receptors and the notch responsive gene, hes-1, were expressed throughout the differentiation process whereas jagged-1 a notch ligand, and the hey-1 gene were markedly down-regulated. In contrast delta-1 was up-regulated with differentiation and was strongly expressed by rat primary SC. Treatment of ASC with N-[N-(3,5-difluorophenacetyl- l-alanyl)]-S-phenylglycine t-butyl ester (DAPT), a gamma-secretase inhibitor which blocks notch signalling, had no effect on up-regulation of SC proteins S100 or GFAP during differentiation. Furthermore, when co-cultured with NG108-15 neurons, differentiated ASC cultures treated in the absence or presence of DAPT enhanced neurite outgrowth to similar levels. Differentiated ASC expressed PMP-22 but P0 was only present when co-cultured with dorsal root ganglia neurons. DAPT did not affect the expression of these myelin proteins. Thus, ASC express components of the notch signalling pathway but our studies suggest notch is unlikely to play a role in the neurotrophic activity and myelination capability of ASC differentiated into SC-like cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.