Abstract

To develop a transformation-induced plasticity (TRIP)-aided bainitic ferrite steel (TBF steel) with high hardenability for a common rail of the next generation diesel engine, 0.2 pct C-1.5 pct Si-1.5 pct Mn-0.05 pct Nb TBF steels with different contents of Cr, Mo, and Ni were produced. The notch-fatigue strength of the TBF steels was investigated and was related to the microstructural and retained austenite characteristics. If Cr, Mo, and/or Ni were added to the base steel, then the steels achieved extremely higher notch-fatigue limits and lower notch sensitivity than base TBF steel and the conventional structural steels. This was mainly associated with (1) carbide-free and fine bainitic ferrite lath structure matrix without proeutectoid ferrite, (2) a large amount of fine metastable retained austenite, and (3) blocky martensite phase including retained austenite, which may suppress a fatigue crack initiation and propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.