Abstract

Atmospheric aerosol particles play an important role for air quality and climate. Secondary organic aerosol (SOA) make up a significant mass fraction of these particles. SOA particles mostly forms from oxidation of gases, followed by gas-particle conversion of the oxidation products. Due to the variety of precursors and oxidation pathways involved in SOA formation, atmospheric SOA rank among the least understood aerosol types. To assess the impacts of SOA particles on air pollution and climate, knowledge of the number of phases in internal mixtures of different SOA types is critical. For example, gas-particle partitioning of organic species, and thus ultimately ambient SOA mass concentration, strongly depend on the number of phases in SOA particles. Atmospheric models traditionally assumed that different SOA types form a single condensed organic phase when internally mixed in individual particles. In case of mixed SOA particles with a single condensed phase uptake of semi-volatile vapors are enhanced, due to a lowering of the activities in the organic aerosol phase, and hence a lowering of the equilibrium partial pressure. By contrast, the equilibrium partial pressure is greater if the different SOA types form separate phases due to repulsive intermolecular forces between immiscible organic molecules. Consequently, enhancement of vapor uptake and ambient SOA mass concentrations will be smaller or absent in the case of phase-separated SOA particles.Here, using fluorescence microscopy, we directly observed the number of phase in individual particles containing mixtures of different SOA types. A total of 6 different SOA types were generated in environmental chambers from oxidation of single precursors. This included both biogenic and anthropogenic SOA types, having elemental oxygen-to-carbon (O/C) ratios between 0.34 and 1.05, covering values characteristic for aged and fresh atmospheric SOA. The number of phases of all possible internal mixtures of two different SOA types, termed SOA+SOA particles, was investigated as a function of humidity between 90% and 0% relative humidity (RH). We found that the number of phases was independent of RH within the range investigated and that 6 out of 15 SOA+SOA mixtures resulted in particles with two condensed organic phases. The observation of phase separated SOA+SOA particles challenges the approach of assuming a single condensed organic phase when representing SOA formation in atmospheric models. Specifically, we demonstrate that the difference in the average O/C ratio between the two SOA types of a mixture (ΔO/C) is a good predictor of the number of phases in particles that are internal mixtures of different SOA types: two-phase SOA+SOA particles formed for ΔO/C ≥ 0.47, while one-phase SOA+SOA particles formed for ΔO/C < 0.47. This threshold ΔO/C provides a simple, yet powerful parameter to predict whether mixtures of fresh and aged SOA particles form one- or two-phase particles in models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.