Abstract

Abstract Using a CESM1 control simulation, we conduct a follow-up study to advance our earlier theoretical research on the multicentennial oscillation (MCO) of the Atlantic meridional overturning circulation (AMOC). The modeled AMOC MCO primarily arises from internal oceanic processes in the North Atlantic, potentially representing a North Atlantic Ocean–originated mode of AMOC multicentennial variability (MCV) in reality. Specifically, this AMOC MCO is mainly driven by salinity variation in the subpolar upper North Atlantic, which dominates local density variation. Salinity anomaly in the subpolar upper ocean is enhanced by the well-known positive salinity advection feedback that is realized through anomalous advection in the subtropical to subpolar upper ocean. Meanwhile, mean advection moves salinity anomaly in the subtropical intermediate ocean northward, weakening the subpolar upper salinity anomaly and leading to its phase change. The salinity anomalies have a clear three-dimensional life cycle around the North Atlantic. The mechanism and time scale of the modeled AMOC MCO are consistent with our earlier theoretical studies. In the theoretical model, artificially deactivating either the anomalous or mean advection in the AMOC upper branch prevents it from exhibiting AMOC MCO, underscoring the indispensability of both the anomalous and mean advections in this North Atlantic Ocean–originated AMOC MCO. In our coupled model simulation, the South Atlantic and Southern Oceans do not exhibit variabilities synchronous with the AMOC MCO; the Arctic Ocean’s contribution to the subpolar upper salinity anomaly is much weaker than the North Atlantic. Hence, this North Atlantic Ocean–originated AMOC MCO is distinct from the previously proposed Southern Ocean–originated and Arctic Ocean–originated AMOC MCOs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call