Abstract

Abstract The Community Earth System Model, version 2 (CESM2), has a very high climate sensitivity driven by strong positive cloud feedbacks. To evaluate the simulated clouds in the present climate and characterize their response with climate warming, a clustering approach is applied to three independent satellite cloud products and a set of coupled climate simulations. Using k-means clustering with a Wasserstein distance cost function, a set of typical cloud configurations is derived for the satellite cloud products. Using satellite simulator output, the model clouds are classified into the observed cloud regimes in both current and future climates. The model qualitatively reproduces the observed cloud configurations in the historical simulation using the same time period as the satellite observations, but it struggles to capture the observed heterogeneity of clouds which leads to an overestimation of the frequency of a few preferred cloud regimes. This problem is especially apparent for boundary layer clouds. Those low-level cloud regimes also account for much of the climate response in the late twenty-first century in four shared socioeconomic pathway simulations. The model reduces the frequency of occurrence of these low-cloud regimes, especially in tropical regions under large-scale subsidence, in favor of regimes that have weaker cloud radiative effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.