Abstract

Enduring questions remain regarding the transition from relatively warm and stable pre- and early-Pleistocene climate to that of the high amplitude glacial-interglacial cycles later in the Quaternary. The main shift in glacial intensity and periodicity around 1 Ma is known as the Mid-Pleistocene Transition (MPT). Here we analyze detrital strontium (Sr) and neodymium (Nd) isotopes in a western Arctic sediment core P23 previously investigated using several litho/biostratigraphic proxies. Based on an improved age framework combining lithostratigraphic cyclicity and Sr isotope stratigraphy, the P23 record extends to ∼3.3 Ma, thus providing a rare insight into the Quaternary Arctic climate change. The distinct pre-MPT P23 record is dominated by Pacific-sourced sediment inputs, with little to no intra-Arctic glacial inputs, except for a sandy interval around ∼2.5 Ma. A consistent decrease of Nd isotopic values toward North American continental signatures started in both the Arctic and Bering Sea at ∼1.5 Ma and led to a major threshold shift in P23 proxies at ∼0.9 Ma. We argue that this threshold was associated with the first prolonged closure of the Bering Strait for an entire obliquity cycle. This shift marked the expansion of the North American ice sheets to the Arctic margin, with dramatic impacts on depositional and hydrographic environments in the Arctic Ocean. These impacts intensified in the subsequent glacial intervals indicating further ice-sheet growth, probably fed back by continuing prolonged Bering Strait closures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.