Abstract

Abstract. Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from −890 to −280 Tg C yr−1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are −472 ± 281 Tg C yr−1 based on the mean and standard deviation of the distribution and −360 Tg C yr−1 (with an interquartile range of −496 to −337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr−1 and assuming the estimate of −472 Tg C yr−1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.

Highlights

  • IntroductionAbout 45 % of the carbon dioxide (CO2) released to the atmosphere by global human activities since 1959 (including the combustion of fossil fuels, cement manufacturing and deforestation and other changes in land use) has been retained by the atmosphere (calculated from data in Le Quéré et al, 2013)

  • About 45 % of the carbon dioxide (CO2) released to the atmosphere by global human activities since 1959 has been retained by the atmosphere

  • The objective of this study is a synthesis of net land– atmosphere CO2 exchange for North America combining different approaches over the period 1990–2009

Read more

Summary

Introduction

About 45 % of the carbon dioxide (CO2) released to the atmosphere by global human activities since 1959 (including the combustion of fossil fuels, cement manufacturing and deforestation and other changes in land use) has been retained by the atmosphere (calculated from data in Le Quéré et al, 2013). King et al.: North America’s net terrestrial CO2 exchange with the atmosphere models of oceanic CO2 uptake, it is possible to estimate CO2 uptake by the terrestrial biosphere (i.e., the land sink) as the residual in the global carbon budget (Le Quéré et al, 2013). Within the uncertainty of the observations, emissions estimates and ocean modeling, this residual calculation is a robust estimate of the global land sink for CO2. Both scientific understanding and policy considerations require more detail than is afforded by a global estimate since the magnitude, spatial pattern and temporal dynamics of the land sink vary considerably at continental and regional scales. To do so requires more spatially refined estimates along with an improved understanding of the major controlling factors and underlying ecosystem processes

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call