Abstract

SnOx films were deposited on a hydrogen-terminated diamond by thermal oxidation of Sn. The X-ray photoelectron spectroscopy result implies partial oxidation of Sn film on the diamond surface. The leakage current and capacitance–voltage properties of Al/SnOx/H-diamond metal-oxide-semiconductor diodes were investigated. The maximum leakage current density value at −8.0 V is 1.6 × 10−4 A/cm2, and the maximum capacitance value is measured to be 0.207 μF/cm2. According to the C–V results, trapped charge density and fixed charge density are determined to be 2.39 × 1012 and 4.5 × 1011 cm−2, respectively. Finally, an enhancement-mode H-diamond field effect transistor was obtained with a VTH of −0.5 V. Its IDMAX is −21.9 mA/mm when VGS is −5, VDS is −10 V. The effective mobility and transconductance are 92.5 cm2V−1 s−1 and 5.6 mS/mm, respectively. We suspect that the normally-off characteristic is caused by unoxidized Sn, whose outermost electron could deplete the hole in the channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call