Abstract
ABSTRACT In this paper, we consider the pseudo-relativistic type Schrödinger equations with general nonlinearities. By studying the related constrained minimization problems, we obtain the existence of ground states via applying the concentration-compactness principle. Then some properties of the ground states have been discussed, including regularity, symmetry and etc. Furthermore, we prove that the set of minimizers is a stable set for the initial value problem of the equations, that is, a solution whose initial data is near the set will remain near it for all time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.