Abstract

The dimensionality of sample is often larger than the number of training samples for highdimensional pattern recognition such as face recognition. Here linear discriminant analysis (LDA) cannot be performed directly because of the singularity of the within-class scatter matrix. This is socalled “small sample size” (SSS) problem. PCA plus LDA (FDA) and Direct LDA (DLDA) are two popular methods to solve the SSS problem of LDA. In this paper, we point out the relationship of these two methods and discuss the deficiency of DLDA. Then a normalized direct linear discriminant analysis (NDLDA) method which overcomes DLDA’s deficiency is proposed. Experiments on ORL, YALE and AR face databases show NDLDA’s superiority over DLDA and FDA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.