Abstract

We present a modular linear discriminant analysis (LDA) approach for face recognition. A set of observers is trained independently on different regions of frontal faces and each observer projects face images to a lower-dimensional subspace. These lower-dimensional subspaces are computed using LDA methods, including a new algorithm that we refer to as direct, weighted LDA or DW-LDA. DW-LDA combines the advantages of two recent LDA enhancements, namely direct LDA (D-LDA) and weighted pairwise Fisher criteria. Each observer performs recognition independently and the results are combined using a simple sum-rule. Experiments compare the proposed approach to other face recognition methods that employ linear dimensionality reduction. These experiments demonstrate that the modular LDA method performs significantly better than other linear subspace methods. The results also show that D-LDA does not necessarily perform better than the well-known principal component analysis followed by LDA approach. This is an important and significant counterpoint to previously published experiments that used smaller databases. Our experiments also indicate that the new DW-LDA algorithm is an improvement over D-LDA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.