Abstract

The attack efficacy of Differential Power Analysis (DPA), a popular side channel evaluation technique for key extraction, is compromised by the false highest Difference Of Means (DOMs) value ('ghost peaks') in the DOMs matrix produced in a conventional DPA. The ghost peak is generated by the wrong key guess and always occurs in the conventional DPA when the number of side channel traces is not enough. In this paper, an improved version of the conventional DPA termed as Normalized DPA (NDPA) is proposed to circumvent the ghost peak. With the analysis on the generation of ghost peaks in the conventional DPA, we observed that by normalizing the DOMs matrix, the ghost peaks can be greatly suppressed. We model the proposed NDPA mathematically and show that it performs better than the conventional DPA. We further provide the experimental validations on a set of 200k power simulation traces on AES S- Box and 500 EM traces from ASCAD dataset. Based on the attack results of these datasets, our proposed NDPA requires (up to 68%) lesser number of traces to reveal a correct key when compared to the conventional DPA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.