Abstract

This article describes how differential power analysis has laid the foundations of such an attack that has challenged the security of almost all cryptosystems like DES, AES, and RSA. This non-invasive attack first extracts the power consumption details from devices embedded with cryptographic techniques and then uses these details to mount attacks on the cryptosystems to reveal the secret key. However, at times there appears multiple similar power peaks at the same points. This raises confusion in distinguishing the actual and the fake peaks named “ghost peaks.” This ghost peak problem affects the efficiency of power analysis attacks as it increases the number of power traces to be evaluated to identify the actual peak. In this article, the authors present an approach which uses the Canberra distance with Euclidean similarity to address this ghost peak problem. The proposed solution diminishes the values of all these ghost peaks, leaving only the actual peak behind that could reveal the secret key.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.