Abstract
ABSTRACT Monthly Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) composite data are widely used in research, such as estimations of socioeconomic parameters. However, some surface conditions affect the VIIRS DNB radiance, which may create some estimation bias in certain regions. In this paper, we propose a novel normalization algorithm for VIIRS DNB monthly composite data. The aim is to normalize VIIRS radiance, collected under different surface conditions, to a reference point, so that the bias is reduced. The algorithm is based on the utilization of stable lit pixels as a reference and a nonlinear regression algorithm, to match un-normalized data to the reference data. Experimental results show that the algorithm could improve correlation (R 2) between the total sum of nightlights (TOL), electric power consumption (EPC), and gross domestic product (GDP) at both a global and local scale. The algorithm could significantly diminish the seasonal component of un-normalized nightlights radiance caused by snow. The intensified nightlights radiance in sandy regions could also be reduced to a more reasonable range in comparison with other regions. Visual inspection shows that the brightness of snow-affected and sandy regions was strongly reduced after undergoing normalization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.