Abstract

Face recognition accuracy is determined by face detection results. Detected faces will be in view of clear and occlusion faces. If detected face has occlusion than recognition accuracy is reduced. This research is directed to increase recognition rate when detected occlusion face. In this paper is proposed normalization occlusion faces by Principal component analysis algorithm. After applying normalization method in occlusion faces false reject error rate is decreased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.