Abstract

We compute explicitly the normal zeta functions of the Heisenberg groups H(R), where R is a compact discrete valuation ring of characteristic zero. These zeta functions occur as Euler factors of normal zeta functions of Heisenberg groups of the form H(O K ), where O K is the ring of integers of an arbitrary number field K, at the rational primes which are non-split in K. We show that these local zeta functions satisfy functional equations upon inversion of the prime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.