Abstract
We study the representation growth of simple compact Lie groups and of SLn(O), where O is a compact discrete valuation ring, as well as the twist representation growth of GLn(O). This amounts to a study of the abscissae of convergence of the corresponding (twist) representation zeta functions. We determine the abscissae for a class of Mellin zeta functions which include the Witten zeta functions. As a special case, we obtain a new proof of the theorem of Larsen and Lubotzky that the abscissa of Witten zeta functions is r/κ, where r is the rank and κ the number of positive roots. We then show that the twist zeta function of GLn(O) exists and has the same abscissa of convergence as the zeta function of SLn(O), provided n does not divide char O. We compute the twist zeta function of GL2(O) when the residue characteristic p of O is odd and approximate the zeta function when p = 2 to deduce that the abscissa is 1. Finally, we construct a large part of the representations of SL2(Fq[[t]]), q even, and deduce that its abscissa lies in the interval [1, 5/2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.