Abstract
SyMRI is a technique developed to perform quantitative MR imaging. Our aim was to analyze its potential use for measuring relaxation times of normal components of the spine and to compare them with values found in the literature using relaxometry and other techniques. Thirty-two spine MR imaging studies (10 cervical, 5 dorsal, 17 lumbosacral) were included. A modified multiple-dynamic multiple-echo sequence was added and processed to obtain quantitative T1 (millisecond), T2 (millisecond), and proton density (percentage units [pu]) maps for each patient. An ROI was placed on representative areas for CSF, spinal cord, intervertebral discs, and vertebral bodies, to measure their relaxation. Relaxation time means are reported for CSF (T1 = 4273.4 ms; T2 = 1577.6 ms; proton density = 107.5 pu), spinal cord (T1 = 780.2 ms; T2 = 101.6 ms; proton density = 58.7 pu), normal disc (T1 = 1164.9 ms; T2 = 101.9 ms; proton density = 78.9 pu), intermediately hydrated disc (T1 = 723 ms; T2 = 66.8 ms; proton density = 60.8 pu), desiccated disc (T1 = 554.4 ms; T2 = 55.6 ms; proton density = 47.6 ms), and vertebral body (T1 = 515.3 ms; T2 = 100.8 ms; proton density = 91.1 pu). Comparisons among the mean T1, T2, and proton density values showed significant differences between different spinal levels (cervical, dorsal, lumbar, and sacral) for CSF (proton density), spinal cord (T2 and proton density), normal disc (T1, T2, and proton density), and vertebral bodies (T1 and proton density). Significant differences were found among mean T1, T2, and proton density values of normal, intermediately hydrated, and desiccated discs. Measurements can be easily obtained on SyMRI and correlated with previously published values obtained using conventional relaxometry techniques.
Highlights
BACKGROUND AND PURPOSESynthetic MRI (SyMRI) is a technique developed to perform quantitative MR imaging
Relaxation time means are reported for CSF (T1 ϭ 4273.4 ms; T2 ϭ 1577.6 ms; proton density ϭ 107.5 pu), spinal cord (T1 ϭ 780.2 ms; T2 ϭ 101.6 ms; proton density ϭ 58.7 pu), normal disc (T1 ϭ 1164.9 ms; T2 ϭ 101.9 ms; proton density ϭ 78.9 pu), intermediately hydrated disc (T1 ϭ 723 ms; T2 ϭ 66.8 ms; proton density ϭ 60.8 pu), desiccated disc (T1 ϭ 554.4 ms; T2 ϭ 55.6 ms; proton density ϭ 47.6 ms), and vertebral body (T1 ϭ 515.3 ms; T2 ϭ 100.8 ms; proton density ϭ 91.1 pu)
Measurements can be obtained on SyMRI and correlated with previously published values obtained using conventional relaxometry techniques
Summary
Our aim was to analyze its potential use for measuring relaxation times of normal components of the spine and to compare them with values found in the literature using relaxometry and other techniques. The goal of this study was to measure T1 and T2 relaxation times, as well as PD values, of normal structures included in normal spine MR imaging (CSF, spinal cord, healthy-versus-desiccated intervertebral disc, and vertebral body) using Synthetic MRI (SyMRI) 8.0 software (SyntheticMR). We aimed to compare our values with those found in the literature from studies using relaxometry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.