Abstract

One of chemical Enhanced Oil Recovery (EOR) methods consists in injecting aqueous solutions of polymers into the reservoir in order to improve mobility ratio between the injected fluid and the remaining oil. This “polymer flooding” process is usually only characterized with the low shear viscosity of the injected fluid, even if these aqueous solutions are strongly shear thinning and may show high elastic properties evidenced by normal stresses appearance. In order to study the mechanisms at the interface level, we develop simple model experimentations with the goal of quantifying the influence of viscoelastic properties on fluid displacement in a simple geometry. For this purpose, we propose and characterize a model fluid formulation, for which elastic and viscous effects can be tuned systematically. We study then the displacement of a viscous oil by a Newtonian non elastic, a viscoelastic or a purely shear thinning fluid in a two dimensional flow cell. Observing the shape of the interface between aqueous fluids and displaced oil permits to appreciate viscoelasticity effects on the displacement. Using model geometries and controlled rheology fluids, we show that viscoelastic fluids tend to better displace immiscible liquids than Newtonian fluids and that those effects are closely related to the apparitions of normal stresses independently of shear thinning property or variation of interfacial tension as soon as viscous effects govern the flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call