Abstract

Let K be a number field and let G be a finite abelian group. We call K a Hilbert-Speiser field of type G if, and only if, every tamely ramified normal extension L/K with Galois group isomorphic to G has a normal integral basis. Now let C 2 and C 3 denote the cyclic groups of order 2 and 3, respectively. Firstly, we show that among all imaginary quadratic fields, there are exactly three Hilbert-Speiser fields of type $C_{2}: \mathbb{Q}(\sqrt {m})$, where $m \in \{-1, -3, -7\}$. Secondly, we give some necessary and sufficient conditions for a real quadratic field $K = \mathbb{Q}(\sqrt {m})$ to be a Hilbert-Speiser field of type C 2. These conditions are in terms of the congruence class of m modulo 4 or 8, the fundamental unit of K, and the class number of K. Finally, we show that among all quadratic number fields, there are exactly eight Hilbert-Speiser fields of type $C_{3}: \mathbb{Q}(\sqrt {m})$, where $m \in \{-11,-3, -2, 2, 5, 17, 41, 89\}$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call