Abstract
We introduce the notion of normal hyperimaginary and we develop its basic theory. We present a new proof of the Lascar-Pillay theorem on bounded hyperimaginaries based on properties of normal hyperimaginaries. However, the use of the Peter–Weyl theorem on the structure of compact Hausdorff groups is not completely eliminated from the proof. In the second part, we show that all closed sets in Kim-Pillay spaces are equivalent to hyperimaginaries and we use this to introduce an approximation of φ-types for bounded hyperimaginaries.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have