Abstract

Flt3 ligand (FL) administration markedly increases bone marrow (BM) stem cells and immature dendritic cells. We investigated the influence of CD40-CD40Ligand (CD154) pathway blockade on antidonor immunity, cytokine production, microchimerism and heart graft survival in BALB/c (H2d) recipients of fully allogeneic C57BL/10 (H2b) FL-mobilized BM (FL-BM) or normal BM. Anti-CD40L mAb strongly suppressed anti-donor T-cell proliferative responses in recipients of either normal or FL-BM, but was less efficient in inhibiting antidonor cytolytic T-cell (CTL) activity, especially in recipients of FL-BM. Interestingly, CD40L blockade was more effective in recipients of multiple compared with single donor BM infusions. Anti-donor cytokine responses revealed complete impairment of IFN-gamma, IL-4 and IL-10 production in recipients of normal BM and CD40L mAb. By contrast, and in agreement with the CTL data, mice given FL-BM retained ability to produce IFN-gamma CD40-CD40L blockade did not promote microchimerism, as evidenced by immunohistology and real time polymerase chain reaction. Nevertheless, anti-CD40L mAb enhanced heart allograft survival in recipients of FL-BM, but the effect was inferior to that achieved with normal BM. These data provide insight into the influence of growth factor-expanded donor BM and costimulation blockade on antidonor immune reactivity and transplant outcome. The comparatively poor outcome obtained using FL-BM plus anti-CD40L mAb in this model may be ascribed to the failure of effectively interdicting antidonor CTL activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call