Abstract

Biochar, as a potential adsorbent, has been widely employed to remove pollutants from sewage. In this study, a lignin-based biochar (CB-800) was prepared by a simple high-temperature pyrolysis using urban green waste (Cinnamomum camphora leaves) as a feedstock to remove norfloxacin (NOR) from water. Batch adsorption test results indicated that CB-800 had a strong removal capacity for NOR at a wide range of pH values. The maximum adsorption achieved in the study was 50.90 ± 0.64mg/g at 298K. The pseudo-first and second-order kinetic models and the Dubinin-Radushkevich isotherm fitted the experimental data well, indicating that NOR adsorption by CB-800 was a complex process involving both physi-sorption and chemi-sorption. The physical properties of CB-800 were characterized by SEM and BET. The mesoporous structures were formed hierarchically on the surface of CB-800 (with an average pore size of 2.760nm), and the spatial structure of NOR molecules was more easily adsorbed by mesoporous structures. Combined with Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis, it was showed that the main NOR adsorption mechanisms by CB-800 included ion exchange, π-electron coordination, hydrogen bonding, and electrostatic adsorption. Meanwhile, the reduction of C = O and pyridine nitrogen, and the presence of C-F2, also indicated the occurrence of substitution, addition, and redox. This study not only determined the reaction mechanism between biochar and NOR, but also provides guidance to waste managers for the removal of NOR from water by biochar. It is envisaged that the results will broaden the utilization of urban green waste.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call