Abstract
Norepinephrine (NE) kinetics were investigated in freely moving (FM) and minimally stressed (MS) rats with the isotope dilution technique. 1) The mean NE spillover rate (NE-SOR) was 79 +/- 6 ng. kg(-1). min(-1), and the mean NE metabolic clearance rate (NE-MCR) 179 +/- 9 ml. kg(-1). min(-1) (n = 31). Thus the NE kinetics in FM and MS rats are much faster than in human beings, probably related to a higher sympathetic drive. 2) Whether the magnitude of NE-MCR is related to the level of plasma NE concentration was investigated. No significant correlation was calculated between plasma NE concentration and NE-MCR in 31 control rats. When plasma NE concentration was varied during either acute or chronic infusion of exogenous NE, NE-MCR remained unchanged as long as animal hemodynamics were not altered. When plasma NE concentration was high enough to increase mean arterial pressure (MAP), NE-MCR was decreased. However, when MAP was increased within comparable magnitude, NE-MCR was decreased during NE and increased during epinephrine (Epi) infusion. Thus the existence of an alpha-/beta-adrenergic mechanism involved in the regulation of NE-MCR independent of known hemodynamic mechanisms is suggested. 3) The "epinephrine hypothesis" was revisited in FM and MS rats. At variance with humans, very high plasma Epi concentrations have to be induced to increase NE-SOR in resting rats. Furthermore, NE-MCR was also increased, accounting for the nonsignificant increase of plasma NE concentration. Within the range of Epi concentrations with no effect on NE-SOR, an increase of NE release was revealed when the presynaptic alpha(2)-adrenoreceptors were partially inhibited by yohimbine. This suggests the existence of a second epinephrine hypothesis.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have