Abstract
In this paper, we study two-person nonzero-sum games for continuous-time Markov chains with discounted payoff criteria and Borel action spaces. The transition rates are possibly unbounded, and the payoff functions might have neither upper nor lower bounds. We give conditions that ensure the existence of Nash equilibria in stationary strategies. For the zero-sum case, we prove the existence of the value of the game, and also provide arecursiveway to compute it, or at least to approximate it. Our results are applied to a controlled queueing system. We also show that if the transition rates areuniformly bounded, then a continuous-time game is equivalent, in a suitable sense, to a discrete-time Markov game.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.