Abstract
We study nonzero-sum stochastic games for continuous time Markov decision processes on a denumerable state space with risk-sensitive ergodic cost criterion. Transition rates and cost rates are allowed to be unbounded. Under a Lyapunov type stability assumption, we show that the corresponding system of coupled HJB equations admits a solution which leads to the existence of a Nash equilibrium in stationary strategies. We establish this using an approach involving principal eigenvalues associated with the HJB equations. Furthermore, exploiting appropriate stochastic representation of principal eigenfunctions, we completely characterize Nash equilibria in the space of stationary Markov strategies.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.