Abstract

Superhydrophobicity is usually achieved by a combination of chemical hydrophobicity and surface topography due to an inability to attain complete non-wetting on the smooth surface of existing materials. Here, we experimentally report high non-wetting of condensation-induced droplets with contact angles approaching 180° on a smooth surface of suspended monolayer of graphene. Such highly non-wetting droplets are found on suspended monolayer graphene open to the water vapour saturated environment on both sides. Simultaneous observations of droplets condensing on monolayer and multilayer supported and suspended graphene demonstrates that this non-wetting behaviour may be unique to suspended monolayer graphene. These results anticipate that interactions between liquid molecules across a suspended monolayer isolated from a bulk substrate may induce high non-wetting beyond that possible on smooth hydrophobic or atomically flat supported monolayer surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.