Abstract

We present a non-weak supercyclicity criterion for vectors in infinite dimensional Banach spaces. Also, we give sufficient conditions under which a class of weighted composition operators on a Banach space of analytic functions is not weakly supercyclic. In particular, we show that the semigroup of linear isometries on the spaces $S^p$ ($p>1$), is not weakly supercyclic. Moreover, we observe that every composition operator on some Banach space of analytic functions such as the disc algebra or the analytic Lipschitz space is not weakly supercyclic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.