Abstract
We survey recent results about composition operators induced by analytic self-maps of the unit disk in the complex plane on various Banach spaces of analytic functions taking values in infinite-dimensional Banach spaces. We mostly concentrate on the research line into qualitative properties such as weak compactness, initiated by Liu, Saksman and Tylli (1998), and continued in several other papers. We discuss composition operators on strong, respectively weak, spaces of vector-valued analytic functions, as well as between weak and strong spaces. As concrete examples, we review more carefully and present some new observations in the cases of vector-valued Hardy and BMOA spaces, though the study of composition operators has been extended to a wide range of spaces of vector-valued analytic functions, including spaces defined on other domains. Several open problems are stated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta et Commentationes Universitatis Tartuensis de Mathematica
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.