Abstract
A series of Cr-doped In2-xCrxO3 (ICO) semiconductor thin films were epitaxially grown on (111)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-0.29PT) single-crystal substrates by the pulsed laser deposition. Upon the application of an electric field to the PMN-0.29PT substrate along the thickness direction, we realized in situ, reversible, and nonvolatile control of the electronic properties and Fermi level of the films, which are manifested by abundant physical phenomena such as the n-type to p-type transformation, metal-semiconductor transition, metal-insulator transition, crossover of the magnetoresistance (MR) from negative to positive, and a large nonvolatile on-and-off ratio of 5.5 × 104% at room temperature. We also strictly disclose that both the sign and the magnitude of MR are determined by the electron carrier density of ICO films, which could modify the s-d exchange interaction and weak localization effect. Our results demonstrate that the ferroelectric gating approach using PMN-PT can be utilized to gain deeper insight into the carrier-density-related electronic properties of In2O3-based semiconductors and provide a simple and energy efficient way to construct multifunctional devices which can utilize the unique properties of composite materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.