Abstract
We prepared 300-nm GeTe thin films on (111)-oriented and piezoelectrically active 0.71 Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-0.29 PT) single-crystal substrates by the pulsed laser deposition and investigated the effects of in situ electric-field-controllable non-180° ferroelastic domain switching of the PMN-0.29 PT on the electronic properties of the GeTe films. The in-plane strain of the PMN-0.29 PT could be modulated continuously and reversibly by electric fields in a nonvolatile manner and could be effectively transferred to the GeTe films. Based on this, we realized reversible and nonvolatile resistance switching and obtained multilevel stable nonvolatile resistance states with good stability and endurance at T = 300 K by applying appropriate asymmetrical bipolar electric fields to the PMN-0.29 PT(111) substrates along the thickness direction. Such heterostructures may be used for multilevel data storage that allows each unit to store multiple bits of information and thus improve the memory density. Our investigation would be beneficial for the fabrication of nonvolatile memory devices using PMN-xPT-based heterostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.