Abstract

Neuronal axons damaged by traumatic injury are unable to spontaneously regenerate in the mammalian adult central nervous system (CNS), causing permanent motor, sensory, and cognitive deficits. Regenerative failure in the adult CNS results from a complex pathology presenting multiple barriers, both the presence of growth inhibitors in the extrinsic microenvironment and intrinsic deficiencies in neuronal biochemistry, to axonal regeneration and functional recovery. There are many strategies for axonal regeneration after CNS injury including antagonism of growth-inhibitory molecules and their receptors, manipulation of cyclic nucleotide levels, and delivery of growth-promoting stimuli through cell transplantation and neurotrophic factor delivery. While all these approaches have achieved varying degrees of improvement in plasticity, regeneration, and function, there is no clinically effective therapy for CNS injury. RNA interference technology offers strategies for improving regeneration by overcoming the aspects of the injured CNS environment that inhibit neurite growth. This occurs through the knockdown of growth-inhibitory molecules and their receptors. In this review, we discuss the current state of RNAi strategies for the treatment of CNS injury based on non-viral vector mediated delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.