Abstract
Steel corrosion normally takes pitting pattern in chloride contaminated RC structures. This paper examines the localized corrosion rust accumulation process through electrochemical analysis. The coupled micro- and macro-cell corrosion process involved in typical chloride-induced corrosion is numerically simulated by employing the Finite Element Method (FEM). The modeling results show that macrocell corrosion rate may decrease drastically while microcell corrosion rate may not change so much during the gradual initiation process of corrosion around reinforcing steel. The non-uniform rust distribution around steel–concrete interface is found to be mainly caused by macrocell corrosion circulating between upper active and lower passive rebar surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.