Abstract

Chloride-induced corrosion of steel reinforcement in concrete may cause severe damage to RC structures. This paper examines the interaction between corrosion-induced cover crack growth and corrosion propagation. The coupled micro- and macro-cell corrosion process involved in a typical chloride-induced corrosion is numerically simulated. Both oxygen concentration and electrical potential distribution within concrete cover are considered in the electrochemical analysis. A uniform thick-walled cylinder model is formulated to simulate the cover surface crack width evolution. Results show that macrocell corrosion rate may not change so much while microcell corrosion rate increases a lot as oxygen permeability increases with corrosion-induced cover crack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.