Abstract

We report the nontrivial topological states in an intrinsic type-II superconductor BaSn 5 (T c ∼ 4.4 K) probed by measuring the magnetization, specific heat, de Haas–van Alphen (dHvA) effect, and by performing first-principles calculations. The first-principles calculations reveal a topological nodal ring structure centered at the H point in the k z = π plane of the Brillouin zone, which could be gapped by spin-orbit coupling (SOC), yielding relatively small gaps below and above the Fermi level of about 0.04 eV and 0.14 eV, respectively. The SOC also results in a pair of Dirac points along the Γ–A direction, located at ∼ 0.2 eV above the Fermi level. The analysis of the dHvA quantum oscillations supports the calculations by revealing a nontrivial Berry phase originating from the hole and electron pockets related to the bands forming the Dirac cones. Thus, our study provides an excellent avenue for investigating the interplay between superconductivity and nontrivial topological states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.