Abstract

Pulse-wave velocity is an index of arterial stiffness, which is a strong indicator of cardiovascular risk. We present a high-speed technique that generates time-resolved complex difference signal intensity simultaneously in the ascending and descending aorta from velocity-encoded projections without gating, allowing quantification of pulse-wave velocity. The velocity-time curve was approximated with a time-resolved complex difference signal intensity to estimate the propagation time of the pulse wave in the aortic arch. The path length of the pulse wave is measured from an oblique sagittal image in a plane encompassing thoracic ascending and descending aorta, and pulse-wave velocity is computed from the ratio between the path length and pulse-wave propagation time. The method was implemented at 1.5 T and 3 T, and pulse-wave velocity was quantified in healthy subjects (ages 20-70 years, N=23) without symptoms or prior history of cardiovascular events. In addition, the method was compared against retrospectively EKG-gated PC-MRI. The overall results were found to be in good agreement with literature data showing age-related increase in aortic stiffness. The RMS differences between the projection and gated PC-MRI methods were less than 4%. Key benefits of the proposed method are simplicity in both data acquisition and processing requiring only computation of the complex difference between the velocity-encoded projections rather than absolute velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.