Abstract
The cosmic-ray spectrum up to the knee ($E\sim 10^{15}$ eV) is attributed to acceleration processes taking place at the blastwaves which bound supernova remnants. Theoretical predictions give a similar estimate for the maximum energy which can be reached at supernova remnant shocks by particle acceleration. Electrons with energies of the order $\sim 10^{15}$ eV should give a nonthermal X-ray component in young supernova remnants. Recent observations of SN1006 and G347.3-0.5 confirm this prediction. We present a method which uses hydrodynamical simulations to describe the evolution of a young remnant. These results are combined with an algorithm which simultaneously calculates the associated particle acceleration. We use the test particle approximation, which means that the back-reaction on the dynamics of the remnant by the energetic particles is neglected. We present synchrotron maps in the X-ray domain, and present spectra of the energies of the electrons in the supernova remnant. Some of our results can be compared directly with earlier semi-analytical work on this subject by Reynolds [1].
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have