Abstract

AbstractThe non-thermal renormalization shielding effects on the elastic electron–atom collision process are investigated in partially ionized generalized Lorentzian non-thermal plasmas. The eikonal analysis for the Hamilton–Jacobi solution and impact parameter method are employed to obtain the eikonal scattering phase shift and eikonal cross section as functions of the collision energy, Debye length, impact parameter, and spectral index of the Lorentzian plasma. It is found that the non-thermal renormalization shielding effect enhances the eikonal scattering phase shift as well as the eikonal collision cross section, especially for small impact parameter domains. It is also found that the non-thermal renormalization shielding effect on the eikonal scattering phase shift decreases with an increase of the impact parameter. In addition, it is found that the maximum position of the eikonal collision cross section has receded from the collision center with an increase of the non-thermal character of the plasma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call