Abstract

Abstract The influence of nonisothermal and quantum shielding on the electron-ion collision process is investigated in strongly coupled two-temperature plasmas. The eikonal method is employed to obtain the eikonal scattering phase shift and eikonal cross section as functions of the impact parameter, collision energy, electron temperature, ion temperature, Debye length, and de Broglie wavelength. The results show that the quantum effect suppresses the eikonal scattering phase shift for the electron-ion collision in two-temperature dense plasmas. It is also found that the differential eikonal cross section decreases for small impact parameters. However, it increases for large impact parameters with increasing de Broglie wavelength. It is also found that the maximum position of the differential eikonal cross section is receded from the collision center with an increase in the nonisothermal character of the plasma. In addition, it is found that the total eikonal cross sections in isothermal plasmas are always greater than those in two-temperature plasmas. The variations of the eikonal cross section due to the two-temperature and quantum shielding effects are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call