Abstract

Plastic recycling and reprocessing activities may release organophosphate ester (OPE) flame retardants and plasticizers into the surrounding environment. However, the relevant contamination profiles and impacts remain not well studied. This study investigated the occurrence of 28 OPEs and their metabolites (mOPEs) in rainfall runoffs and agricultural soils around one of the largest plastic recycling industrial parks in North China and identified novel organophosphorus compounds (NOPs) using high-resolution mass spectrometry-based nontarget analysis. Twenty and twenty-seven OPEs were detected in runoff water and soil samples, with total concentrations of 86.0-2491 ng/L and 2.53-199 ng/g dw, respectively. Thirteen NOPs were identified, of which eight were reported in the environment for the first time, including a chlorine-containing OPE, an organophosphorus heterocycle, a phosphite, three novel OPE metabolites, and two oligomers. Triphenylphosphine oxide and diphenylphosphinic acid occurred ubiquitously in runoffs and soils, with concentrations up to 390 ng/L and 40.2 ng/g dw, respectively. The downwind areas of the industrial park showed elevated levels of OPEs and NOPs. The contribution of hydroxylated mOPEs was higher in soils than in runoffs. These findings suggest that plastic recycling and reprocessing activities are significant sources of OPEs and NOPs and that biotransformation may further increase the ecological and human exposure risk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.