Abstract

Transfer of genes encoding therapeutic proteins into the myocardium shows great potential for treatment of coronary artery disease. To quantitatively elucidate the behavior of plasmid DNA following cardiac gene transfer, time kinetics, dose-response relationship, systemic spread to the liver, and the influence of different promoters on plasmid DNA gene expression in rat hearts were examined using a novel nonsurgical direct delivery method that enables testing of large numbers of animals. Plasmids encoding either vascular endothelial growth factor A 165 or a fusion protein between enhanced green fluorescent protein (EGFP) luciferase were injected directly in rat hearts under echocardiographic guidance. The results show that gene expression is dose related and that the duration of gene expression is transient. These findings underscore the necessity to explore other efficient vectors or alternative methods of gene delivery to achieve increased and prolonged gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.