Abstract

The non-steady-state temperature field of the vapor-gas medium in the vicinity of a droplet growing in supersaturated vapor is constructed. In the conduction problem, a time-dependent boundary condition is used which ensures the fulfillment of the balance condition of the heat of phase transition. The resultant temperature field is compared with the one obtained in the heat conduction problem with the equilibrium boundary condition on the surface of a droplet of a fixed radius. Although the solution with the equilibrium boundary condition does not ensure the balance between the heat released on the growing droplet and the heat distributed due to heat conduction in the vapor-gas medium, the difference between the two solutions is not very large. This difference is important for describing the homogeneous nucleation of supersaturated vapor in the vicinity of a growing droplet, as is indicated by comparison of the vapor supersaturation fields constructed with and without allowance for thermal effects, as well as with the use of solutions to the diffusion and heat conduction problems with various boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.