Abstract
In this paper, we propose the frozen form of nonstationary iterated Tikhonov regularization to solve the inverse problems and study its convergence analysis in the Banach space setting, where the iterates of proposed method are defined through minimization problems. These minimization problems involve uniformly convex penalty terms that may be non-smooth, which can be utilized in the reconstruction of several notable features (e.g., discontinuities and sparsity) of the sought solutions. We terminate our method through a discrepancy principle and show its regularizing nature. Moreover, we show the convergence of the iterates of the method with respect to Bregman distance as well as their strong convergence. In order to show the applicability of the proposed method, we show that it is applicable on two ill-posed inverse problems. Finally, by assuming that a stability estimate holds within a certain set, we derive the convergence rates of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.