Abstract
Memristive neural networks (MNNs) attract the attention of many researchers because memristor can mimic the learning mechanism of biologic neuron, spike timing-dependent plasticity (STDP). While STDP brings huge potentials on many applications for memristive neural networks, it also gives complex calculation process for hardware implement. In this work, a non-STDP learning mechanism is proposed, which is implemented in two common frameworks including feedforward neural network and crossbar. The non-STDP learning mechanism relies on the linear relationship between the value of memristor and area of input spikes, which gives the proposed method a simple calculation process and better hardware compatibility. Experimental results show that the non-STDP learning mechanism can help to achieve good hardware performance in both feedforward neural network and crossbar frameworks. Compared with STDP based memristive neural networks, the proposed method can save 2.19%-24.4% hardware resource (ALMs) and improve 1.56-12.25 MHz processing speed under a set of different network scales. In future, some other complex memristor models with non-STDP learning mechanism should be taken into consideration, which will give more room for practical applications of memristive neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.