Abstract

This study demonstrates the utility of nonsolvent induced phase separation (NIPS)-based 3D plotting as a novel SFF technique for the production of 3-dimensionally macrochanneled poly(ε-caprolactone) (PCL) scaffolds with highly porous PCL frameworks. In particular, a PCL/tetrahydrofuran (THF) solution was deposited in an EtOH bath to rapidly solidify PCL filaments with a highly porous structure through exchange of THF solvent and EtOH nonsolvent. All the scaffolds produced with various PCL concentrations (14wt%, 18wt%, and 22wt%) showed well-constructed 3-D macrochannels with highly porous PCL frameworks. However, the mechanical properties of the scaffolds, measured by compressive and tensile strength tests, increased with an increase in PCL concentration owing to a decrease in the overall porosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.