Abstract
Recently introduced time-dependent renormalized natural orbital theory (TDRNOT) is tested on non-sequential double ionization (NSDI) of a numerically exactly solvable one-dimensional model He atom subject to few-cycle, 800-nm laser pulses. NSDI of atoms in strong laser fields is a prime example of non-perturbative, highly correlated electron dynamics. As such, NSDI is an important "worst-case" benchmark for any time-dependent few and many-body technique beyond linear response. It is found that TDRNOT reproduces the celebrated NSDI "knee," i.e., a many-order-of-magnitude enhancement of the double ionization yield (as compared to purely sequential ionization) with only the ten most significant natural orbitals (NOs) per spin. Correlated photoelectron spectra - as "more differential" observables - require more NOs.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have